Thursday, 17 January 2019

Battle of the Methods: Whole Transcriptome Versus mRNA-seq

Maybe you want to examine the entire transcriptome or maybe you want to investigate changes in expression from your favorite gene. You could do whole transcriptome sequencing or mRNA-seq. But which one is right for your project? From budget considerations to sample collection, let’s briefly look at both to see which might be best for your…

The post Battle of the Methods: Whole Transcriptome Versus mRNA-seq appeared first on Bitesize Bio.

Wednesday, 16 January 2019

Optimal Conditions for Live-Cell Imaging

Live-cell imaging is the investigation of dynamic physiological processes in living cells using time-lapse imaging from milliseconds to hours. Live-cell imaging turns multiple snapshots to movies, which is in contrast to fixed-cell imaging that examines cellular activity at a time point. Typical applications of live-cell imaging that are used to study kinetic events include enzyme…

The post Optimal Conditions for Live-Cell Imaging appeared first on Bitesize Bio.

Analyzing RNA-Seq Data

RNA-seq is based on next-generation sequencing (NGS) and allows for discovery, quantitation and profiling of RNA. The technique is quickly taking over a slightly older method of RNA microarrays to get a more complete picture of gene expression in a cell. Data generated by RNA-seq can illustrate variations in gene expression, identify single nucleotide polymorphisms…

The post Analyzing RNA-Seq Data appeared first on Bitesize Bio.

Analyzing RNA-Seq Data

RNA-seq is based on next-generation sequencing (NGS) and allows for discovery, quantitation and profiling of RNA. The technique is quickly taking over a slightly older method of RNA microarrays to get a more complete picture of gene expression in a cell. Data generated by RNA-seq can illustrate variations in gene expression, identify single nucleotide polymorphisms…

The post Analyzing RNA-Seq Data appeared first on Bitesize Bio.

Tuesday, 15 January 2019

Breaking the Wall: How to Make Protoplasts

Non-mammalian cells, including bacteria, fungi, and plant cells, have a cell wall that maintains the shape of the cell. These cell walls are particularly strong, due to their composition as they contain polymers that create a rigid sphere around the vulnerable cytoplasm contained inside the plasma membrane. In bacteria, the cell wall includes several layers…

The post Breaking the Wall: How to Make Protoplasts appeared first on Bitesize Bio.

Monday, 14 January 2019

Are You In(to) Situ? – Putting Together Your First RNAscope® Assay

You are thinking of trying out RNAscope®. After all, RNAscope® holds promise for increasing the sensitivity and specificity of your in situ hybridization. Yet, getting started can be a little overwhelming with the numerous kits and reagents available in the RNAscope product line. Here’s an overview of your options to help you navigate to the…

The post Are You In(to) Situ? – Putting Together Your First RNAscope® Assay appeared first on Bitesize Bio.

Wednesday, 9 January 2019

How to Fool-“Proof” Your Experiment: An Introduction to Yeast Plasmids

A lot of research experiments require the use of a eukaryotic host as opposed to E. coli due to its greater conformity and suitability in expressing eukaryotic proteins. This is the reason why yeast cells have gained importance as cloning and expression hosts. For protein expression studies to hybrid screens, many applications require insertion and…

The post How to Fool-“Proof” Your Experiment: An Introduction to Yeast Plasmids appeared first on Bitesize Bio.